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A general formulation of Koopmans’ theorem is derived for high-spin half-filled open shells in the restricted
open-shell Hartree-Fock (ROHF) method based on a variational treatment of both the initial (nonionized)
open-shell system under study, e.g., X, and the corresponding high-spin ions Xk

+, Xm
+, and XV

- having a hole
or an extra electron in the closed, open, and virtual shell, respectively. The ions are treated within a FCI-RAS
(full CI in the restricted active space) method with a use of arbitrary ROHF orbitals optimal for the initial
system. We show that the desired canonical ROHF orbitals and orbital energies satisfying Koopmans’ theorem,
first defined within the canonical ROHF treatment [Plakhutin; et al. J. Chem. Phys. 2006, 125, 204110],
generally appear as the natural CI orbitals and the eigenvalues of CI matrices for the respective ions X(. A
comparison is performed between the results derived with the present CI approach and the canonical ROHF
method for the specific case where the canonical orbital energies satisfying Koopmans’ theorem do not satisfy
the Aufbau principle.

I. Introduction

In applications of Koopmans’ theorem1 (KT) to closed-shell
systems within the Hartree-Fock method this theorem is
commonly formulated in the particular form

Ik ) -εk (1)

where Ik is Koopmans’ approximation to the kth ionization
potential, and εk is the respective eigenvalue of the Hartree-Fock
(HF) equation,

F̂ |θk〉 ) εk |θk〉 (2)

As is known, the eq 1 represents Koopmans’ theorem1 in the
particular case when the orbital energies εk are eigenvalues of
the special (canonical) form for the Hartree-Fock Hamiltonian,

F̂ ) ĥ + ∑
k

(2Ĵk - K̂k) (3)

For other possible forms of the HF Hamiltonian2-4 the eq 1 is
generally not valid and, because of this, one must appeal to the
general (Variational) formulation of Koopmans’ theorem in the
HF method1 which is discussed below.

The Hartree-Fock method for closed-shell systems is com-
monly used in the canonical form (2) and (3), and this makes
the formulation of KT by eq 1 sufficient for applications. As
compared to this, the restricted open-shell Hartree-Fock
(ROHF) method has been worked out and implemented in
various quantum chemical programs in significantly different
forms (for a review and bibliography, see ref 5). The orbital
energies derived with different (noncanonical) ROHF Hamil-
tonians vary over wide limits and generally cannot be correlated
with the respective ionization potentials or electron affinities.

The orbitals from these ROHF calculations differ from each
other by an arbitrary unitary transformation within the closed,
open, and virtual sets.

The canonical form for the ROHF Hamiltonian has been first
derived by Plakhutin et al.5 for the systems X possessing high-
spin half-filled open electronic shells. By derivation, the
eigenvalues of the canonical Hamiltonian5 obey the three KT
relationships corresponding to the three (of the six) one-electron
ionization processes possible in such systems:

(A) a removal of a � electron from the kth closed-shell orbital,

εk ) -Ik
� (4a)

(B) a removal of an R electron from the mth open-shell orbital,

εm ) -Im
R (4b)

(C) an attachment of an R electron to the Vth virtual orbital,

εV ) -AV
R (4c)

where

Ii ) E(Xi
+) - EROHF(X) (i ) k, m)

AV ) EROHF(X) - E(XV
-)

(5)

are the vertical ionization potentials (IPs) and electron affinities
(EAs), respectively, defined in the approximation of “frozen”
orbitals. The term “frozen” here means that the energies of ions,
E(Xi

+) and E(XV
-), are defined as the expectation value of the

total many-electron Hamiltonian Ĥ with a one-determinantal
wave function for the ion formed with the same (canonical)
ROHF orbitals optimal for the parent system X. Below we shall
denote these energies as Efrozen(Xi

+) and Efrozen(XV
-), respectively.

For a better understanding of the essense of KT relationships
(4), we should discriminate between two different conceptions:
Koopmans’ theorem and Koopmans’ approximation. Koopmans’
theorem in its exact meaning1 is a rigorous mathematical
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theorem which states that the energy difference ∆Ek )
Efrozen(Xk

+) - EHF(X) is equal to the canonical HF orbital energy
for the initial closed-shell system: ∆Ek ) -εk. The essense of
Koopmans’ approximation is that the same energy difference
∆Ek is equated to the experimental IP: ∆Ek ) Ik. The latter is
an obvious approximation. The KT relationships (4a)-(4c) take
a rigorous form if and only if the right-hand sides of (4) have
the meaning of the respective energy differences ∆Ei (5) but
not of the experimental IPs and EAs.5 In the treatment below
we also shall deal with Koopmans’ theorem in its exact (narrow)
meaning, i.e., with a rigorous mathematical theorem.

By derivation, the relationships (4) correspond to well-defined
spin states of both X and X1( in (5):

S(Xk,�
+ ) ) S(X) + 1/2

S(Xm,a
+ ) ) S(X) - 1/2

S(XV,a
- ) ) S(X) + 1/2

(6)

where S (X) is the total spin of a high-spin open-shell system
X with one or more half-filled orbitals. An analogous but more
complex treatment for the other three ionization processess
removal of an R electron from the closed shell, addition of a �
electron to the open shell, and addition of a � electron to the
virtual shellswill be the subject of another paper.

The present work presents a more detailed study of the
validity of KT in the ROHF method. We give a general
(Variational) formulation of KT which is valid in an arbitrary
ROHF treatment and reduces to the particular formulation (4)
within the canonical ROHF method.5

A starting point of our study is the fundamental Koopmans’
idea1 to relate a HF treatment of closed-shell systems to a
treatment of the respective ionized systems (cations) within a
limited Variational approach. Koopmans considered the family
of single determinant wave functions for the ion which could
be formed using orbitals that were linear combinations of the
occupied orbitals of the neutral. He then asked for the best ion
wave function of this one-determinantal form.

An approach equivalent to Koopmans’ is to define the energy
and total wave functions of cations as eigenvalues and eigen-
functions of the CI matrix 〈 Ψk

+ |Ĥ | Ψl
+〉 where Ψk

+ is a one-
determinant wave function for cation Xk

+ having a hole in an
orbital φk (k ) 1, 2, ..., Nc). The orbitals {φk} used for
constructing determinants |Ψk

+〉 ≡ |Ψk
+{φ}〉 are arbitrary unitary

transforms of the occupied HF orbitals optimal for the parent
closed-shell system X. The ionization potential Iz can be
estimated as Iz ) ECI(Xz

+) - EHF(X), where ECI(Xz
+) is the zth

eigenvalue (z ) 1, 2, ..., Nc) of the CI matrix above representing
the CI energy of cation Xz

+. It is easy to show that this set of
configurations is closed under a unitary transformation of the
occupied orbitals of X, so the CI wave functions and energies
are unchanged by this transform.

Using the present CI terminology, the three main statements
forming the famous Koopmans’ theorem1 can be formulated as
follows: (i) the multideterminantal CI wave function of cation
Xz

+ can be represented by a single Slater determinant |Ψz
+{θ}〉,

where the new orbitals {θk} are natural CI orbitals, i.e.,
eigenvectors of the CI one-body density matrix for cation Xz

+;
(ii) the new orbitals {θk} are identical to the canonical closed-
shell HF orbitals optimal for the parent system X.

These two fundamental results represent the first part of KT.1

From these results it follows that the CI energy of cation Xz
+,

ECI(Xz
+), is equal to the monodeterminantal energy,

〈Ψz
+{θ} |Ĥ |Ψz

+{θ}〉, defined in a nonvariational manner, i.e.,
in the approximation of “frozen” orbitals,

ECI(Xz
+) ) 〈Ψz

+{θ}| Ĥ |Ψz
+{θ}〉 ) Efrozen(Xz

+) (7)

On the basis of the results (i) and (ii), Koopmans has proved
the third fundamental result1 that can be presented in the form

Iz ) ECI(Xz
+) - EHF(X)

) Efrozen(Xz
+) - EHF(X)

) -εz

(8)

where εz is the eigenvalue of the canonical HF equation (2) for
the parent system X. The last of the relationships (8) is nothing
but the relationship (1) above usually called “Koopmans’
theorem”. However, this relationship does not reveal the
fundamental (Variational) character of KT expressed by the first
two of the relationships (8). The CI approach minimizes the
right-hand side of the first relationship while Koopmans
minimized the right-hand side of the second relationship in his
derivation.

The approach to analysis of KT outlined above but in a
simpler form has been earlier discussed by Newton.6 For the
case of ions formed from closed-shell systems, Newton has
proved the validity of the relationship (7) above, but he did not
reveal the fundamental relation between canonical closed-shell
orbitals for X and natural CI orbitals for ions. Newton’s analysis6

of KT has been later extended by Stepanov et al.7 to open-shell
systems within an unrestricted Hartree-Fock method (UHF).

On the basis of ideas like these,6,7 Sauer et al.8 tried to give
a similar (CI-based) formulation of KT in the ROHF method.
This attempt, however, has led to the conclusion that KT is not
Valid in the ROHF method. Below we shall discuss how the
generalization of KT to the open shell case made by Sauer et
al.8 differs from the generalization we have made in this paper.
Moreover, as an alternative to KT in the ROHF method, Sauer
et al. have formulated the so-called “Simplified Koopmans’
theorem”,8,9 according to which IPs and EAs (5) might be
compared not with eigenvalues of some special (canonical)
ROHF Hamiltonian, but with slightly modified diagonal ele-
ments of Roothaan’s Hamiltonian.10

In the present work, we perform a more detailed analysis of
the validity of KT in the ROHF method. Following Koopmans’
variational idea,1 we combine a ROHF treatment of the parent
open-shell system X with a FCI-RAS (full CI in the restricted
active space) treatment of ionized systems X(. We analyze the
CI equations for the three ionization processes (4) and show
the results are the same as those derived with the canonical
ROHF method.5 This enables us to give a general (Variational)
formulation of KT which is valid in different ROHF treatments
with arbitrary (noncanonical) choices for the orbitals.

We also present two illustrative calculations based on these
equations. In the process of doing these calculations with the
GAMESS program,11 we found some specific problems which
may arise in canonical ROHF calculations in the case where
the orbital energies satisfying KT (4) do not satisfy the Aufbau
principle.

II. Koopmans’ Theorem and the ROHF Method

A starting point of a ROHF method is the familiar expression
for the total electronic energy:10

EROHF(X) ) 2 ∑
i

fiHii + ∑
i

∑
j

fi fj(2aijJij - bijKij)

(9)

where the indices i, j numerate the occupied orbitals; fi is the
occupation number for the orbital φi (fi ) 1 for the closed-shell
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orbitals, and 0 < fi < 1 for the open-shell orbitals); aij and bij

are coupling coefficients specific for the open-shell system X
under consideration.10 Application of the variational principle
to the energy functional (9) yields the generalized Hartree-Fock
equation,

R̂ |φi〉 ) εi[R̂] |φi〉 (10)

where R̂ represents the family of ROHF Hamiltonians that
provide a fulfillment of the variational conditions. The explicit
form of these conditions and different definitions for R̂ have
been summarized in ref 5.

The eigenvalues of the Hartree-Fock equation (10), εi[R̂],
generally cannot be correlated with the respective IPs or EAs
via KT (4). Such a correlation is possible if, and only if, the
ROHF Hamiltonian and its eigenvalues and eigenvectors are
canonical,

R̂can|θi〉 ) εi[R̂can] |θi〉 (11)

that is, they satisfy a number of conditions following from
Koopmans’ theorem.1 Here we analyze these conditions for the
particular case of high-spin half-filled open-shell systems
characterized by Roothaan open-shell coefficients10

f )1/2 a ) 1 b ) 2 (12)

For this case, the widely used choices for the ROHF Hamiltonian
R̂ (10) can be presented in the common form of the symmetric
(Hermitian) matrix 〈φ i | R̂ |φj〉 defined in the basis of arbitrary
molecular orbitals:5

where

F̂c ) ĥ + (2Ĵc - K̂c) + f (2Ĵo - K̂o)

F̂o ) f [ĥ + (2Ĵc - K̂c) + f (2aĴo - bK̂o)]
(14)

are the ROHF Fock operators10,12 for the closed-shell and open-
shell orbitals, respectively. For comparison, the lower triangle
of the matrix (13) is expressed in terms of the Fock operators
F̂R and F̂� defined in the UHF method,13

F̂R ) ĥ + (ĴR + Ĵ�) - K̂R

F̂� ) ĥ + (ĴR + Ĵ�) - K̂� (15)

For the case under consideration (12), the ROHF and UHF Fock
operators defined on the same ROHF orbitals are connected by
the relationships: F̂R ) 2F̂o and F̂� ) 2(F̂c - F̂o) ) ĥ + (2Ĵc -
K̂c) + Ĵo, so that the ROHF Hamiltonian matrix (13) is symmetric.12

In the self-consistent limit, the off-diagonal blocks in (13)
vanish and this provides a fulfillment of the variational
conditions. For the systems (12) under study, various definitions
for the Hamiltonian (10) differ between the diagonal blocks only.
The definitions of the diagonal blocks in (13) derived by
different authors can be presented in the common form5,11

R̂(ss) ) 2{A(ss)F̂o + B(ss)(F̂c - F̂o)}

) A(ss)F̂
R + B(ss)F̂

� (16)

where A(ss) and B(ss) are the coefficients characterizing different
ROHF treatments, and s ) c, o, v for the closed, open, and

virtual shell, respectively. A list of coefficients (16) for some
choices of R̂ in commonly used programs is presented in ref 5.

For the special case R̂ ) R̂can (11), the diagonal blocks take
the form

R̂can
(cc) ) 2(F̂c - F̂o) ) F̂� (17a)

R̂can
(oo) ) 2F̂o ) F̂R (17b)

R̂can
(vv) ) 2F̂o ) F̂R (17c)

derived by Plakhutin et al.5 from the respective KT conditions
(4a)-(4c) above. Comparing with (16), we see that the canonical
choice is A(cc) ) 0, B(cc) ) 1; A(oo) ) 1, B(oo) ) 0; A(vv) ) 1, B(vv)

) 0.
As is known,5 the exact choice for the diagonal blocks in

(14) does not affect the total energy EROHF(X) of eq 9. The choice
(17) is of special meaning in the sense2,5 that it provides a
consistent definition of the expectation value for the energy of
the ionic systems X1( in the approximation of “frozen” orbitals
in the sense of Koopmans’ theorem (4) and (5). To understand
this better, we analyze below the wave functions and density
matrices for the ionized systems X1( in the respective three cases
(4a)-(4c).

III. Canonical ROHF Method and Limited CI

Following the variational spirit of the Koopmans’ approach,1

we first consider the family of Slater determinants, |Ψk,�
+ 〉,

formed by removing a � electron from a closed-shell orbital φk

(k ) 1, 2, ..., Nc) of the open-shell system X under study,

|Ψk,�
+ 〉 ) det |φ1φ1...φk-1φk-1φk φk+1φk+1...φNc

φNc

φNc+1...φNc+No
| (18)

where both the closed-shell {φk} and open-shell {φm} orbitals
(m ) Nc + 1, Nc + 2, ..., Nc + No) are derived for the parent
system X with the use of an arbitrary (noncanonical) Hamil-
tonian R̂ (10).

Let us further define the configuration interaction (CI) matrix
T kl

(cc) as

Tkl
(cc) ) 〈Ψk,�

+ | Ĥ | Ψl,�
+ 〉 (19)

where k, l ) 1, 2, ..., Nc. The diagonal element of this matrix,
Tkk

(cc), represents the expectation value of the energy of cation
Xk,�

+ in the approximation of “frozen” orbitals. However, since
the orbitals {φk} and {φm} used to form the determinants (18)
are arbitrary transforms of the orbitals optimal for X, neither
the wave function (18) nor the diagonal element of (19) are
defined unambiguously. To derive the true value of Efrozen(Xk,�

+ )
and to give the proper definition of the wave function for cation
Xk,�

+ , we consider the structure of matrix (19) in more detail.
After some algebra, the diagonal element of (19) can be
presented in the form

Tkk
(cc) ) EROHF(X) - {Hkk + ∑

l

(2Jkl - Kkl) + ∑
m

Jkm}

) EROHF(X) - (R̂can
(cc))kk

(20)

where all matrix elements are defined in the basis of nonca-
nonical orbitals {φj} ) {φk} x {φm} (10), and the operator R̂can

(cc)

is defined by eq 17a. The explicit form of the off-diagonal matrix
elements (19) can be found via Slater rules:
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Tlk
(cc) ) -{Hkl + 2 ∑

i

[ii|kl] - ∑
i

[ki|il] + ∑
m

[mm|kl]}

) -{Hkl + 2(Ĵc)kl - (K̂c)kl + (Ĵo)kl}

) -(R̂can
(cc))kl (k * l)

(21)

where index i runs over the closed-shell orbitals of the parent
(nonionized) system X, and the notation [ab |cd] means

[ab|cd] ) ∫ φa*(1) φb(1)
1

r12
φc*(2) φd(2) dV1 dV2

(22)

Taken together, (21) and (21) give us the important relationship
between the CI matrix (19) and the diagonal block (17a) of the
canonical ROHF Hamiltonian matrix,

Tlk
(cc) ) Tkl

(cc)* ) -(R̂can
(cc))kl + δklEROHF(X) (23)

Before discussing this relationship corresponding to ionization
from the closed shell, we consider two similar relationships
corresponding to ionization of an R electron from the open shell
(4b) and attachment of an R electron to the virtual shell (4c)
with formation of ions Xm,R

+ (m ∈ open shell) and XV,R
- (V ∈

virtual shell), respectively. Following the approach described
above, we consider two respective sets of Slater determinants,

|Ψm,R
+ 〉 ) det |φ1φ1...φNc

φNc
φNc+1...φNc+m-1

φNc+m+1...φNc+No
| (24)

and

|ΨV,R
- 〉 ) det |φ1φ1...φNc

φNc
φNc+1φNc+2...φNc+No

φNc+No+V|

(25)

representing configuration state functions (CSF) for ions Xm,R
+

and XV,R
- to be used in a restricted CI. By analogy with the case

(19), we define two respective CI matrices,

Tmn
(oo) ) 〈Ψm,R

+ | Ĥ | Ψn,R
+ 〉 (26)

where m, n ∈ open shell, and

TuV
(vv) ) 〈Ψu,R

- | Ĥ |ΨV,R
- 〉 (27)

u, V ∈ virtual shell. Using the same technique, one easily obtains
the desired relationships between CI matrices (26) and (27) and
the respective diagonal blocks (17b)-(17c) of the canonical
ROHF Hamiltonian matrix,

Tnm
(oo) ) (-1)n-m+1(R̂can

(oo))mn + δmnEROHF(X) (m e n)
(28)

TuV
(vv) ) (R̂can

(vv))uV + δuVEROHF(X) (29)

which are counterparts of the relationship (23) for the respective
ionization and attachment processes.

The relationship (28) needs some additional comments. As
compared to the relationships (23) and (29), the two matrices
entering (28), i.e., Tnm

(oo) and (R̂can
(oo))mn, do not commute, and hence,

do not possess the same set of eigenfunctions. It should be noted,
however, that these two matrices can be made commutative if
a factor of (-1)m is inserted in the definition of Ψm,R

+ (24): Ψ̃m,R
+

) (-1)mΨm,R
+ . This yields the new CI matrix T̃ mn

(oo) )
〈Ψ̃m,R

+ |Ĥ |Ψ̃n,R
+ 〉 ≡ (-1)n-mT mn

(oo), (m e n), which commutes with
matrix (R̂can

(oo))mn,

T̃nm
(oo) ) -(R̂can

(oo))mn + δmnEROHF(X) (m e n)
(30)

In the treatment below we shall deal, however, with the original
CI matrix (26) and the respective relationship (28). This will
allow us to perform a direct comparison between results of a
theoretical treatment and results of CI calculations, as existing
quantum chemical programs deal with the wave functions and
CI matrices of the form (23)-(25).

IV. Variational Formulation of KT in the ROHF Method

The three above relationships (eqs 23, 28, and 29) establish
a fundamental connection between diagonal blocks of the
canonical ROHF Hamiltonian matrix for the initial system X
and CI matrices for ions Xk,�

+ , Xm,R
+ , and XV,R

- defined in the
respective subspaces. By derivation, these relationships are
fulfilled for an arbitrary choice of the orbitals used for
constructing CI and canonical ROHF Hamiltonian matrices. In
the treatment below we shall assume, however, that the {φj} )
{φk} x {φm} x {φV} orbitals are optimal for the initial open-
shell system X and are derived with the use of an arbitrary
(generally noncanonical) ROHF Hamiltonian (10). For this
choice of {φj}, the Hamiltonian matrix (13) takes a block-
diagonal form.

As pointed out above, the wave function Ψk,�
+ (18) for cation

Xk,�
+ and the expectation value for the energy of this cation,

〈Ψk,�
+ |Ĥ |Ψk,�

+ 〉, defined in the approximation of “frozen” orbitals
{φj} are defined ambiguously. The same problem arises in the
case of ions Xm,R

+ (24) and XV,R
- (25). On the basis of eqs 23, 28,

and 29, we give a general variational definition of both the
energy and wave functions of ions that appear in the particular
formulation of KT (4) and (5). Just as for the closed shell case,
this derivation makes implicit use of the fact that the three CI
spaces defined above are closed under the allowed unitary
transforms on the three subsets of orbitals. Hence the CI results
are independent of the choice of orbitals.

A. KT and the CI Energy of Ions. We start the treatment
with the analysis of the relationship (23) corresponding to
ionization from the closed shell. As follows from (23), the
matrices T (cc) and R̂can

(cc)* commute, and hence, the eigenvalues
of these matrices, εz[T (cc)] and εz[R̂can

(cc)], where z ) 1, 2, ..., Nc,
are connected by the relationship

εz[T
(cc)] ) -εz[R̂can

(cc)] + EROHF(X) (31)

This relationship is a CI analog of Koopmans’ relationship for
the closed-shell systems (see eq 22 in ref 1). By definition, a
zth eigenvalue of the matrix T(cc) is equal to the CI energy of
cation Xz,�

+ :

εz[T
(cc)] ≡ ECI(Xz,�

+ ) (32)

while the eigenvalues of the matrix R̂can
(cc) satisfy KT in the

particular form (4a), i.e., εz[R̂can
(cc)] ) -Iz

�. Combining the latter
relationship with eqs 5 and 32, we obtain the new formulation
of KT in the ROHF method for the case of ionization from the
closed shell,

Iz
� )-εz[R̂can

(cc)]

) ECI(Xz,�
+ ) - EROHF(X)

(33)

which can be compared with the particular formulation5 given
by eqs 4a and 5 above,
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Iz
� ) -εz[R̂can

(cc)]

) Efrozen(Xz,�
+ ) - EROHF(X)

Before discussing the key result (33), we consider two other
ionization processes (4b)-(4c) and two respective relationships
(28) and (29). Equation 29 is similar to (23) in the sense that
the matrices entering (29) commute. Taking this into account,
we immediately obtain the new formulation of KT for attach-
ment of an R electron to the virtual shell:

Az
R ) -εz[R̂can

(vv)]

) EROHF(X) - ECI(Xz,R
- )

) EROHF(X) - Efrozen(Xz,R
- )

(34)

where, in this case, z ∈ virtual shell.
For the ionization from the open shell (4b), the respective

relationship (28) is more complex, as the matrices T(oo) and R̂can
(oo)*

entering (28) do not commute. However, it is easy to prove
that the eigenvalues of these matrices obey the relationship
similar to (31):

εz[T
(oo)] ) -εz[R̂can

(oo)] + EROHF(X) (35)

(see also below), and hence,

Iz
R ) -εz[R̂can

(oo)]

) ECI(Xz,a
+ ) - EROHF(X)

) Efrozen(Xz,a
+ ) - EROHF(X)

(36)

where, in this case, z ∈ open shell.
In complete analogy to eq 8, when there is no open shell,

eqs 33, 34, and 36 give us the new (variational) formulation of
KT in the ROHF method. According to this formulation, both
the energy of the initial open-shell system X and the energy of
ions X( appearing in Koopmans’ theorem are defined in a
Variational manner, i.e., by the ROHF and limited CI methods,
respectively.

It also follows from eqs 33, 34, and 36 that in all three cases
under consideration the CI energy of ions, ECI(X(), is equal to
the energy Efrozen(X() first defined within the canonical ROHF
method5 in the approximation of “frozen” orbitals, i.e., in a
nonVariational manner. This result is nontrivial (see, for
comparison, ref 8) and needs a detailed explanation.

B. Reduction of the CI Wave Function to Monodetermi-
nantal Form. To clarify the origin of the discussed equality
ECI(X() ) Efrozen(X(), we have to prove that the multidetermi-
nantal CI wave function of an ion, say Φ(z)(X(), defined as an
eigenfunction of the respective CI matrix, is equal (within the
sign) to the one-determinant ROHF wave function Ψz

+(X()
defined in ref 5 in a nonVariational manner (i.e., in the “frozen”
orbital approximation) on the basis of canonical orbitals optimal
for X. We here present the desired proof for the most complex
case, i.e., for ionization from the open shell, for which the
matrices T (oo) and R̂can

(oo)* do not commute (28).
Let Φ(z) be a zth eigenvector of the CI matrix T mn

(oo) (26):

|Φ(z)〉 ) ∑
n

Un
(z)|Ψn,R

+ 〉 (37)

∑
n

Tmn
(oo)Un

(z) ) Um
(z)εz[T

(oo)] (38)

where Un
(z) are the coefficients of the CI expansion over

determinants |Ψn,R
+ 〉 (24). The determinants are defined on the

basis of arbitrary (noncanonical) orbitals {φj} ) {φk} x {φm}

optimal for X. Let θ z be a zth eigenvector of the diagonal open-
shell block R̂can

(oo) (17b) defined on the same basis {φj},

|θz〉 ) ∑
n

Xn
(z)|φn〉 (39)

∑
n

(R̂can
(oo))mnXn

(z) ) Xm
(z)εz[R̂can

(oo)] (40)

where Xn
(z) are the coefficients of the expansion of the canonical

orbital θz over initial orbitals {φm}.
On the basis of the relationship (28), one may prove that the

eigenvalues (38) and (40) are connected by eq 35, i.e., εz[T (oo)]
) -εz[R̂can

(oo)] + EROHF(X), while the respective expansion
coefficients Un

(z) and Xn
(z) satisfy the relationship

Un
(z) ) (-1)nXn

(z)* (41)

and hence,

|θz〉 ) ∑
n

Xn
(z) |φn〉 ) ∑

n

(-1)nUn
(z)*|φn〉 (42)

(We here note that in the similar case of ionization from the
closed shell (23) the respective coefficients are connected by
the relationship Un

(z) ) Xn
(z)*, while in the case of attachment of

an electron to the virtual shell (29) they are equal to each other,
i.e., Un

(z) ) Xn
(z)).

Now let us consider the one-body density matrix, F(z)(1, 1′),
corresponding to the CI wave function (37),

F(z)(1, 1′) ) N∫σ(1)) σ(1′)
Φ(z)(1,2,..., N) Φ(z)(1′,2,..., N)*

dσ1 dV2dσ2 ... dVN dσN (43)

where N ) (2Nc + No - 1) is the total number of electrons in
cation Xz,R

+ , and σ1 means the spin function of the first electron.
Taking into account the definitions of Φ(z) (37) and Ψn,R

+ (24),
the density matrix (43) takes the form

F(z)(1, 1′) ) 2 ∑
k

φk(1) φk(1′)* + ∑
m

φm(1) φm(1′)* -

∑
m

∑
n

(-1)m+n+1Um
(z) Un

(z)*
φn(1) φm(1′)* (44)

Substitution of eq 42 into eq 44 gives us the diagonal form for
the CI density matrix

F(z)(1, 1′) ) 2 ∑
k

φk(1) φk(1′)* + ∑
m

θm(1) θm(1′)* -

θz(1) θz(1′)* (45)

where m, z ∈ open shell.
The result (45) is principally important. At first, we note that

the eigenvectors of the CI density matrix (45), i.e., the natural
CI orbitals {θm} for cation Xz,R

+ coincide with the respective
open-shell eigenvectors of the canonical ROHF Hamiltonian
(11) for the initial system X. Second, the CI density matrix (45)
is equal to the ROHF density matrix corresponding to the one-
determinant wave function

|Ψz,R
+ 〉 ) det|φ1φ̄1...φNc

φ̄Nc
θNc+1...θNc+z-1

θNc+z+1...θNc+No
| (46)

This immediately proves the desired result that the wave function
(46) used in the canonical ROHF method5 is equal to the CI
wave function Φ(z) (37), and hence, the respective energies
Efrozen(Xz,a

+ ) and ECI(Xz,a
+ ) of eq 36 are equal to each other.

A similar analysis has been performed for removal of a �
electron from the closed shell and for attachment of an R
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electron to the virtual shell. We present the results of this
analysis, i.e., the diagonal form of the CI density matrix (43)
for cation Xz,�

+ having a hole in the closed shell,

F(z)(1, 1′) ) 2 ∑
k

θk(1) θk(1′)* - θz(1) θz(1′)* +

∑
m

φm(1) φm(1′)* (47)

(k, z ∈ closed shell), and for anion Xz,R
- having an extra electron

in the virtual shell,

F(z)(1, 1′) ) 2 ∑
k

φk(1) φk(1′)* + ∑
m

φm(1) φm(1′)* +

θz(1) θz(1′)* (48)

where z ∈ virtual shell.
These formulas conclude the new (variational) formulation

of KT in the ROHF method. By derivation, this formulation is
applicable to high-spin half-filled open-shell systems (12) and
is valid within an arbitrary ROHF method. A detailed discussion
of this formulation and some applications are given below.

To conclude this treatment, we note that the representability
of the FCI-RAS wave functions for ions by a single determinant
following from eqs 46-48 was expected for the particular case
of ionization from the closed shell (47), as this result follows
from both Koopmans’ treatment1 and a general Coleman’s
theorem.14 According to Coleman, a full CI wave function for
(M - 1) electrons in M orbitals can be represented by a single
determinant in the basis of natural CI orbitals.

C. Comparison with Previous Approaches. On the basis
of the treatment above, we now can revert to a discussion of
the Sauer et al. attempt8 to give a variational (CI-based)
formulation of KT in the ROHF method. At first, we recall that
the Sauer et al.8 treatment is based on the approaches of Newton6

and Stepanov et al.7 developed within the closed-shell HF and
UHF methods, respectively. According to these references,6,7

the CI wave function of cation Xi
+, formed by removing an

electron from the initial system X, can be represented by a linear
combination of determinants Ψj

+

|Φi
+〉 ) ∑

j

Uj
(i)|Ψj

+〉 (49)

where all determinants Ψj
+ are defined in the basis of

Hartree-Fock orbitals optimal for X and each of determinants
corresponds to a hole in the respective orbital φj. In the UHF
case,7 all determinants Ψj

+ in (49) correspond to a hole in the
same occupied subspace of X, i.e., in either R (Ψj

+ ≡ Ψj,R
+ ) or

� (Ψj
+ ≡ Ψj,�

+ ) subspace. Using the ROHF notations, the active
CI spaces in these two UHF cases can be presented in the form

Ψj,R
+ ∈ {Ψk,R

+ } x {Ψm,R
+ } (50a)

Ψj,�
+ ∈ {Ψk,�

+ } (50b)

where, as above, k ) 1, 2, ..., Nc and m ) Nc + 1, ..., Nc + No.
In the closed-shell case,6 both conditions (50a) and (50b) take
the same form: Ψj

+ ∈ {Ψk
+}. It is easy to prove7 that the CI

matrix for cation, 〈Ψi
+ |Ĥ |Ψj

+〉, and the respective Fock matrix
for the initial system X are connected by the relationship
〈Ψi,σ

+ |Ĥ |Ψj,σ
+ 〉 ) -〈φj | F̂σ |φi〉 + δijEUHF(X), where σ ) R or �.

In the closed-shell case,6 the latter relationship takes a similar
form with EUHF(X) ) EHF(X) and F̂σ ) F̂, where F̂ is defined
by eq 3. From here one immediately obtains the relationship
(8) above, i.e., ECI(Xz

+) - EHF(X) )-εz, that proves a variational
character of Koopmans’ theorem in the closed-shell HF method.

As compared to this, the eigenvalues of the UHF Fock operators,
εz,σ, satisfying Koopmans’ theorem ECI(Xz,σ

+ ) - EUHF(X) )-εz,σ,
cannot in general be equated to the experimental IPs via
Koopmans’ approximation εz,σ ) -Iz

σ. A proof of this statement
and a detailed analysis of the validity of KT in the UHF method
will be given in another paper.

With some changes, the same CI approach was used by
Stepanov et al.7 and, later, by Sauer et al.8 to give a variational
formulation of KT in the ROHF method. A distinctive feature
of the approach7,8 is that the active CI space within the ROHF
treatment is also defined by eq 50a, i.e., the same as in the
UHF treatment.7,8

The latter statement needs some explanation. As pointed out
in refs 7 and 8, in the ROHF case each of the functions Ψj

+ in
(50) can be the symmetry-adapted (spin-projected) combination
of determinants, i.e., the ROHF functions Ψj

+ (50) are defined
in refs 7 and 8 as configuration state functions (CSF). In the
discussion below this specializing does not play a significant
role. The principally important point is that the active CI space
for cation Xi,R

+ (50a), defined in refs 7 and 8, involves
determinants from two different subspaces, i.e., corresponding
to a hole in both closed and open shells.

Before discussing the approach of refs 7 and 8, we present,
for comparison, the respective active CI spaces used in the
present work:

Ψj,R
+ ∈ {Ψm,a

+ } (51a)

Ψj,�
+ ∈ {Ψk,�

+ } (51b)

(see also eqs 18 and 24 above).
The problem with (50a) is that the respective CI matrix

〈Ψi,R
+ | Ĥ |Ψj,R

+ 〉, where Ψj,R
+ ∈ {Ψk,R

+ } x {Ψm,R
+ }, does not

commute with any ROHF Hamiltonian matrix (14), and hence,
the eigenvalues of the so-defined CI matrix have no relation to
Koopmans’ theorem. It should be pointed out that the problem
of (non)commutation of two these matrices has not been even
mentioned by Stepanov et al.,7 and so, their treatment actually
proves neither validity nor invalidity of KT in the ROHF
method.

This problem was later discussed in more detail by Sauer et
al.8 They regarded the CI in the spin-projected active space
(50a), in which ROHF determinants Ψj,R

+ are replaced by the
respective CSFs, as the natural extension of Koopmans’
approach to ROHF method. Their analysis has shown, however,
that the eigenvalues of the CI matrix defined in the spin-
projected space (50a) cannot be related to eigenvalues of any
ROHF Hamiltonian. On the basis of this finding, they concluded
that Koopmans’ theorem relating the CI energy to an orbital
energy did not hold in the ROHF method.

A comparison between the latter conclusion and the results
of our treatment above reveals the source of the wrong
conclusion.8 For the case of a removal of an R electron, within
a ROHF treatment, one should separate two different processess
ionization from the open shell which is described by the active
CI space (51a), and ionization from the closed shellsbecause
these spaces are not mixed by the allowed unitary transforms
of the ROHF orbitals. A treatment of the latter case, i.e., of a
removal of an R electron from the closed shell, is more complex
and will be given in another paper.

D. Canonical ROHF Orbitals from FCI-RAS Calcula-
tions. In the next section we shall perform a detailed comparison
between canonical ROHF orbitals and orbital energies derived
by the method of ref 5, from the one side, and the respective
characteristics derived by the present FCI-RAS method, i.e.,
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natural CI orbitals and eigenvalues of CI matrices, from the
other side. Before presenting the respective results, we should
describe in more detail the procedure used for deriving canonical
ROHF orbitals from FCI-RAS calculations.

As follows from eqs 45, 47, and 48 defining the diagonal
form of the CI one-body density matrix (43) for ionic systems
X1(, the occupation numbers of natural CI orbitals {θz} are
always equal to 0, 1, or 2. This means that the natural CI orbitals
derived by diagonalization of the density matrix (43) are
separated onto the three sets. Within each of these sets the
natural orbitals are degenerate and are arbitrary within a unitary
transformation. As noted above, these natural orbitals can be
chosen to be the canonical ROHF orbitals for the parent system
X. If this choice is made, then all of the CI wave functions
considered here are simultaneously reduced to the form of a
single Slater determinant.

In practice, a standard eigenvalue program will produce
arbitrary mixtures of vectors within each degenerate subspace.
Hence, the output vectors from a CI density matrix diagonal-
ization are not equal in general to the desired canonical ROHF
orbitals. To overcome this difficulty, we introduce the new
difference density as follows:

q(z)(1, 1′) ) F(1, 1′) - F(z)(1, 1′) (52)

where F(z)(1, 1′) is the CI density matrix for ionic systems Xz
1( defined by eq 43 and F(1, 1′) is the ROHF one-body density
matrix for the parent system X

F(1, 1′) ) 2 ∑
k

φk(1) φk(1′)* + ∑
m

φm(1) φm(1′)*

(53)

For the three particular cases discussed in sections III and IV,
the CI density matrix F(z)(1, 1′) takes the diagonal form given
by eqs 45, 47, and 48, respectively. For all these cases, the
difference density (52) can be presented in the form

q(z)(1, 1′) ) (θz(1) θz(1′)* (54)

where the upper and lower signs correspond to cations and
anions, respectively, and θz is the natural CI orbital for the
respective ion Xz

1(.
It follows from (54) that a diagonalization of the difference

density (52) yields a single eigenvector θz which, by derivation,
represents a zth canonical ROHF orbital for the parent system
X. To derive a full set of canonical ROHF orbitals, we should
perform this procedure for all possible z, i.e. (Nc + No + Nv)
times. On the basis of orbitals defined in this way the CI wave
functions for all ionized systems discussed in section III are
represented by single Slater determinants.

V. Illustrative Calculations (ROHF and CI)

A. Koopmans’ Theorem and the Aufbau Principle. As
shown in ref 5, the canonical ROHF orbital energies satisfying
KT (4a)-(4c) usually differ significantly from the respective
values derived with other ROHF treatments (see, for example,
Tables 1 and 2 in ref 5). Of particular interest here are the cases
where the sequence of orbital energies satisfying KT does not
obey the familiar Aufbau principle. Our experience has shown
that such cases occur frequently in the canonical ROHF method.

Although violations of the Aufbau principle appear in
calculations with different ROHF treatments, such violations
within the canonical ROHF treatment are based on Koopmans’
theorem, that is, have physical meaning, and hence, can be
verified experimentally. Below we will show, for example, that

violations of the Aufbau principle found from canonical ROHF
calculations for manganese atoms agree with existing experi-
mental data.

Violations of the Aufbau principle create some known
difficulties in practical calculations. To perform such calculations
within the canonical ROHF method,5 a special algorithm is
required. For the particular case of high-spin half-filled open-
shell systems (12), such calculations can be performed (at least,
in principle) with the use of a general ROHF algorithm designed
by Montgomery in the GAMESS program.11 However, because
of a specific error in this algorithm, results of calculations for
the systems not satisfying the Aufbau principle appear incor-
rectly labeled on the output (see also below).

The FCI-RAS approach developed in this work allows one
to derive canonical orbital energies satisfying KT within an
arbitrary ROHF treatment [via the relationships (32)-(35)]. This
can be used for deriving the canonical MOs and orbital energies
with programs where canonical orbitals are not available.

B. ROHF Calculations. This and the next subsections
present results of ROHF and CI calculations performed with
the aim to illustrate the approach developed in section IV. At
first, we should note that in the course of these calculations an
unexpected discrepancy in the computer output from the
GAMESS package11 has been revealed between the results
derived by CI calculations and those derived with the canonical
ROHF method.5

Taking this into account, we present here results of ROHF
and CI calculations for a simple model system consisting of
the HNO molecule in a highly excited state with total spin S
) 2 (state 5A′′) using the small basis set 6-31G. The choice
of this model as an illustration is caused exclusively by its
small size. All calculations have been performed at the same
geometry of the model system (RH-N ) 1.062 Å, RN-O )
1.211 Å, ∠H-N-O ) 108.5°), which has been taken as the
same15 as for the actual closed-shell ground state of HNO.
All calculations have been performed with the GAMESS
program.11 These results are merely intended to illustrate the
method and do not correspond to any actual energies of the
HNO molecule.

For the high-spin half-filled open-shell systems (12) to which
the model under study belongs, the canonical choice for the
diagonal blocks of the ROHF Hamiltonian matrix (13) is
presented by eq 17 above. For comparison, we also used the
ROHF approach developed by Guest and Saunders16 character-
ized by the coefficients11

A(ss) ) B(ss) ) 1/2 (s ) c, o, v) (55)

The results of calculations performed with the coefficients (17)
and (55) are presented in Table 1 (see the columns entitled as
“original sequence” and “Guest and Saunders’s method”,
respectively). It is easy to see that although the total energy of
HNO is the same in both calculations, the electronic configura-
tions as reported in the output appear to be different:

Γc ) 6a′ Γo ) 2a′ + 2a′′ (56)

for the coefficients (17), and

Γc ) 5a′ + a′′ Γo ) 3a′ + a′′ (57)

for the coefficients (55), and this presents an unexpected
issue.

A similar discrepancy has been revealed in calculations
of other systems. This discrepancy becomes particularly
complex in the case of systems with multiple open and closed
shells belonging to the symmetry point group C1. For this
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case, all MOs have the same spatial symmetry and, because
of this, an immediate ascertainment of the difference between
two sets of MOs derived with coefficients (17) and (55) is
difficult.

To clarify this discrepancy, we have carried out an additional
ROHF calculation of the HNO model with the use of the same
coefficients (17b) and (17c) for the open and virtual shells,
respectively, and of the new (intermediate) coefficients for the
closed shell,

Ã(cc) ) 0 B̃(cc) ) 2 (58)

This change in the ROHF Hamiltonian must merely result in
doubling the closed-shell orbital energies,5

ε̃k ) 2εk ε̃m ) εm ε̃V ) εV (59)

without changing the orbitals.
In reality, the use of the specific “orbital-energy-scaling”

(58) and (59) leads in this particular case to another order of
the closed-shell and open-shell orbitals: compare the orbital
energies εj in column “original sequence” of Table 1 with
the values ε̃j in column “intermediate data”. According to
the latter data, the desired canonical orbital energies, εj[R̂can],
i.e., the eigenvalues of the canonical ROHF Hamiltonian (17),
are as follows: εk[R̂can] ) ε̃k/2, εm[R̂can] ) ε̃m, and εV[R̂can] )
ε̃V (see also the column “canonical orbital energies”). The

principal difference between the two sets of orbital energies,
εj and εj[R̂can], is that the latter do not obey the Aufbau
principle.

On the basis of this treatment, we may assume that the wrong
data in the column “original sequence” are caused by the specific
error in the ROHF algorithm implemented in Gamess.11 The
essense of the error is as follows: after convergence of the SCF
procedure was achieved, the program makes a final diagonal-
ization of the ROHF Hamiltonian just to print out self-consistent
MOs and orbital energies. At this stage, molecular orbitals are
rearranged according to the Aufbau principle εk < εm < εV. For
those systems for which this principle is not fulfilled, the
rearranged MO sequence appears incorrect, although the other
results of calculation (such as the total energy and the density
matrix) derived at the previous stage are correct. This is the
case for the HNO model system.

C. CI calculations. To illustrate the use of eqs 33-35, we
have derived canonical orbitals and orbitals energies for the same
system HNO (state 5A′′) via a construction of the CI matrices (19),
(26), and (27) and of the respective one-body density matrices (42)
for ions HNO1(. All calculations have been performed with the
ORMAS-CI (orbitally restricted multiple active space-CI) method
developed and implemented in program GAMESS by Ivanic.11,17

All CI matrices were constructed on the noncanonical ROHF
orbitals derived by Guest and Saunders’ method.16

TABLE 1: ROHF Canonical and Noncanonical Orbital Energies εj for the Model Open-Shell System HNO (State 5A′′), and CI
Energies of Ions HNO z

1(

ROHFa,b CIa

MO
original

sequencec
intermediate

datad
canonical

orbital energiese
Guest and

Saunders’ methodf zg ECI(HNO z
1()h ∆Ez

i

Virtual q ) -1j

20 +1.7068 +1.7068 +1.7068 +1.7362 10 -127.660701 (6A′′) +1.7068
19 +1.2052 +1.2052 +1.2052 +1.2403 9 -128.162274 +1.2052
18 +1.1008 +1.1008 +1.1008 +1.1660 8 -128.266644 +1.1008
17 +1.0790 (a′′) +1.0790 (a′′) +1.0790 (a′′) +1.1074 (a′′) 7 -128.288451 (6A′) +1.0790
16 +1.0578 +1.0578 +1.0578 +1.0915 6 -128.309632 +1.0578
15 +0.9743 +0.9743 +0.9743 +1.0432 5 -128.393195 +0.9743
14 +0.8250 +0.8250 +0.8250 +0.8650 4 -128.542485 +0.8250
13 +0.7622 (a′′) +0.7622 (a′′) +0.7622 (a′′) +0.8303 (a′′) 3 -128.605266 +0.7622
12 +0.7447 +0.7447 +0.7447 +0.8237 2 -128.622791 +0.7447
11 +0.3505 +0.3505 +0.3505 +0.3993 1 -129.016994 +0.3505
Open-shell q ) +1
10 -0.1388 -0.1388 -0.1388 +0.1102 1 -129.228656 (4A′′) -0.1388
9 -0.5762 (a′′) -0.5762 (a′′) -0.5762 (a′′) -0.2194 (a′′) 2 -128.791258 (4A′) -0.5762
8 -0.6601 (a′′) -0.6753 -0.6753 -0.2592 3 -128.692152 -0.6753
7 -0.6753 -0.9166 -0.9166 -0.5000 4 -128.450831 -0.9166
Closed-shell q ) +1
6 -0.7196 -0.6601 × 2 (a′′) -0.6601 (a′′) -0.7426 (a′′) 1 -128.707387 (4A′) -0.6601
5 -0.9107 -0.7196 × 2 -0.7196 -0.7897 2 -128.647918 (4A′′) -0.7196
4 -0.9166 -0.9107 × 2 -0.9107 -1.0293 3 -128.456735 -0.9107
3 -1.5481 -1.5481 × 2 -1.5481 -1.6399 4 -127.819369 -1.5481
2 -15.7117 -15.7117 × 2 -15.7117 -15.7494 5 -113.655756 -15.7117
1 -20.7512 -20.7512 × 2 -20.7512 -20.7750 6 -108.616284 -20.7512
Etotal -129.367477 -129.367477 -129.367477 -129.367477

a Basis set 6-31G. Energy values in Hartrees. All calculations have been performed at the same geometry15 of HNO (RH-N ) 1.062 Å, RN-O

) 1.211 Å, ∠ H-N-O ) 108.5°). b To simplify this table, only the a′′ (π) molecular orbitals are marked explicitly. All other MOs have the
symmetry a′(σ). Violations of the Aufbau principle are marked in bold. c Calculation with the coefficients A(ss) and B(ss) of eqs 17a-17c. The
results of this calculation (MOs and orbital energies) were incorrectly rearranged at the last iteration of the SCF procedure (see the text for
details). This caused the open and closed shells to be mis-identified on the output. d Calculation with the coefficients A(ss) and B(ss) of eqs 17b,
17c, and 58. e Orbital energies satisfying Koopmans’ theorem (4a)-(4c). These energies and the respective orbitals are eigenvalues and
eigenvectors of the canonical ROHF Hamiltonian (17). f Calculation with the coefficients A(ss) and B(ss) of eq 55. g z is the number of the CI
eigenvalue. h Eigenvalues of CI matrices (19), (26), and (27). All matrices have been constructed with the orbitals {φj} derived with Guest and
Saunders’ ROHF method16 for neutral HNO (state 5A′′). i ∆Ez ) ({EROHF(HNO) - ECI(HNOz

1()}, where EROHF(HNO) ) -129.367477. j q is
the charge of the ion.
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The results are presented in the three last columns of Table
1. We present the total CI energies of ions HNO1( and the
energy differences,

∆Ez ) ({EROHF(HNO) - ECI(HNO1()} (60)

where the upper and lower signs correspond to cations and
anions, respectively, and the index z numerates eigenvalues of
the respective CI matrix. In the course of these calculations,
we also derived three respective sets of natural CI orbitals
representing the canonical ROHF orbitals for the closed, open,
and virtual shells of the parent system HNO. As follows from
Table 1, the energy differences ∆Ez (60) appear in all cases
equal to the respective canonical ROHF orbital energies for
the neutral HNO, εj[R̂can], and this is in complete agreement
with eqs 33-35.

For comparison, the same CI calculations have been per-
formed with the use of ROHF orbitals derived by both
Roothaan’s method10 and McWeeny and Diercksen’s method,18

for which the coefficients A(ss) and B(ss) of eq 16 differ
significantly5 from those in eqs 17 and 55. As expected, the
results appeared identical to those of Table 1, because in the
case under study the CI total energies and natural orbitals are
independent of the choice of ROHF orbitals.

D. Manganese Atom. As a more physical example, we
present here canonical orbital energies for a real (nonartificial)
open-shell system in its ground state, for which the orbital
energies satisfying Koopmans’ theorem do not satisfy the
Aufbau principle. In Table 2 we compare the orbital energies
for the free atom Mn in its ground 6S state (configuration 3d54s2)
derived with different ROHF treatments and experimental IPs.
As is well-known, experiment shows that ionization from the
closed 4s shell is easier than from the half-filled 3d orbitals.
For completeness, we also present the respective UHF orbital
energies.

To derive the canonical orbitals and orbital energies for the
neutral Mn with the canonical ROHF method,5 we exploited
the technique described above [eqs 58 and 59 where, in this
case, B̃(cc) g 3] to obtain correct results from GAMESS. The
same canonical orbitals and orbital energies have been derived

with a FCI-RAS method. The respective CI matrices (19), (26),
and (27) of the dimension 10 × 10, 5 × 5, and 118 × 118,
respectively, were constructed using the orbitals derived by
Guest and Saunders method.16

The AO basis set19,20 for atom Mn used in this work gives
an ROHF energy close to the ROHF limit (see Table 2), and
so, all the orbital energies in Table 2 can be immediately
compared with each other. The essential differences in orbital
energies derived with different ROHF treatments are caused by
different forms of the respective Hamiltonians. For a better
understanding of these differences, we present the coefficients5

A(ss) and B(ss) of eq 16 characterizing the respective ROHF
Hamiltonians:

This shows that among the closed-shell orbital energies pre-
sented in Table 2 only the canonical ones satisfy KT. The open-
shell energy ε3d satisfying KT is correctly reproduced also in
the ROHF atomic method.21

As follows from Table 2, the canonical ROHF orbital energies
for atom Mn satisfying KT violate the Aufbau principle since
the closed 4s orbital energy lies above the open 3d energy. The
case of atom Mn provides us with a possibility to verify this
violation by experimental data. A qualitative agreement between
the canonical orbital energies ε3d ) -0.6388 and ε4s ) -0.2316
and the respective vertical IPs,23 0.5231 and 0.2732, following
from Table 2 is of principal importance. This shows that the

TABLE 2: ROHF and UHF Orbital Energies εj for Atom Mn (State 6S, Configuration 3d54s2) and Experimental IPsa

ROHF UHF

canonical orbital
energiesb

McWeeny and
Diercksen’ methodc

Guest and
Saunders’ methodd

numerical ROHF
(Roothaan’s

atomic theory)e R spinf � spin
experimental

IPg

Virtual Virtual Virtual
4p +0.2678 +0.2841 +0.2922 +0.2626 +0.3200
(3d) +0.2095
5s +0.0802 +0.0824 +0.0835 +0.0788 +0.0886
Open-shell
3d -0.6388 -0.0937 -0.1406 -0.63885 0.5231
Closed-shell Occupied Occupied
4s -0.2316 -0.2424 -0.2479 -0.24787 -0.2734 -0.2260 0.2732h

(3d) -0.6409 (0.5231)
3p -2.2351 -2.3981 -2.4795 -2.47953 -2.7275 -2.2319
3s -3.6165 -3.7500 -3.8166 -3.81665 -4.0215 -3.6123
2p -24.7473 -24.7908 -24.8126 -24.81260 -24.8773 -24.7488
2s -29.0435 -29.0874 -29.1095 -29.10948 -29.1762 -29.0434
1s -240.5332 -240.5337 -240.5340 -240.53400 -240.5338 -240.5349
Etotal -1149.866215 -1149.866215 -1149.866215 -1149.866251 -1149.869792

a Basis set (23s,15p,11d) from refs 19 and 20. Energy values in Hartrees. Violations of the Aufbau principle are marked in bold. b Orbital
energies satisfying Koopmans’ theorem (4) and (33)-(35). These energies have been derived by two independent methods: canonical ROHF
method5 and limited CI (see the text for details). c Reference 18. d Reference 16. e Reference 21. These orbital energies have been derived with
the Froese Fisher’ program.22 f 〈Ŝ2〉 ) 8.771. g Reference 23. h Experimental value I4s ) 0.2732 corresponds to the high-spin state 7S of Mn+

(3d5 4s1), i.e., corresponds to a removal of a � electron (I4s ) I4s
� ).
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canonical ROHF orbital energies have physical meaning and
that the violations of the Aufbau principle reflect the physical
reality.

A comparison between the canonical ROHF and UHF data
shows that in this specific case where the closed-shell and open-
shell orbitals are fully separated by symmetry, the UHF orbital
energies ε3d

R ) -0.6409 and ε4s
� ) -0.2260 appear close to the

respective ROHF energies (-0.6388 and -0.2316) and give
approximately the same KT estimates for the vertical IPs. It
should be emphasized, however, that this is not a general case.

The validity of Koopmans’ theorem in the UHF method

εk
R ) -Ik

R

εk
� ) -Ik

�

εm
R ) -Im

R
(62)

where, as above, k ) 1, 2, ..., Nc and m ) Nc + 1, ..., Nc + No,
follows from the formal treatment of KT in the UHF method
within both the limited CI7 and the “frozen” orbital approxima-
tion. This validity needs a detailed reanalysis which will be given
in another paper. Here we can state that the first of the three
KT relationships (62) is wrong in the general case while the
validity of the two last relationships in (62) needs a detailed
analysis in each particular case.

VI. Conclusion

Koopmans’ theorem for ROHF is closely related to the results
of limited CI calculations using configurations differing by one
orbital from the ROHF wave function. Using this concept, we
have derived the relationship between the canonical ROHF
orbital energies5 satisfying Koopmans’ theorem for the initial
open-shell system X, εz(X), and the limited CI energies for ions,
ECI(Xz (), in three cases: ionization of a � electron from the
closed shell (4a), ionization of an R electron from the open shell
(4b), and addition of an R electron to the virtual shell (4c). In
all of these cases, the relationship takes the same form:

εz(X) ) ({-ECI(Xz
() + EROHF(X)} (63)

where the upper and lower signs correspond to cations and
anions, respectively (see also eqs 29, 33, 34, and the last column
in Table 1).

This key relationship proves that the energy of ions first
defined within the canonical ROHF method5 in a nonVariational
manner, i.e., in the approximation of “frozen” orbitals, really
corresponds to the limited CI energy. This result also explains
the well-known “paradox”24 according to which the estimates
of IPs via Koopmans’ theorem24,25 in most cases agree better
with experimental vertical IPs than the respective estimates
derived by ∆SCF (∆ROHF) method.

On the basis of the CI approach developed, we also have
shown that the canonical ROHF orbitals {θz} for the closed,
open, and virtual shells of the initial system X generally appear
as the natural CI orbitals for the respective ions. The multide-

terminantal CI wave functions for all of these ions constructed
on the canonical ROHF orbitals {θz} are simultaneously reduced
to the form of single Slater determinants.
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operators Ĵo ) ∑m Ĵm and K̂o ) ∑m K̂m used in eq 14 slightly differs from
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